報(bào)告題目:The Minkowski type problems for unbounded convex hypersurfaces
報(bào)告人:葉德平
報(bào)告時(shí)間:6月17日(星期一)16:15-17:15
報(bào)告地點(diǎn):理學(xué)院1-301
英文摘要:
The classical Minkowski problem for convex bodies (i.e., compact convex sets) aims to find necessary and/or sufficient conditions on a pregiven measure \mu such that \mu is equal to the surface area measure of some convex body. Such a problem turns out to be central in many areas such as analysis, geometry, and PDEs. In this talk, I will talk about our recent progress on the Minkowski type problems for unbounded convex hypersurfaces. I will discuss their connections with Monge-Ampere type equations and present our solutions to these Minkowski type problems.
中文摘要:
緊致凸集上的經(jīng)典Minkowski問(wèn)題旨在找到使得給定測(cè)度\mu等于某個(gè)緊致凸集的曲面面積測(cè)度的充分或必要條件,在分析、幾何和 PDE等許多領(lǐng)域都發(fā)揮著重要作用。本報(bào)告將介紹無(wú)界凸超曲面上Minkowski型問(wèn)題的最新研究進(jìn)展,以及它們與Monge-Ampere型方程的聯(lián)系,最后給出Minkowski型問(wèn)題的證明。
報(bào)告人簡(jiǎn)介:
葉德平,加拿大Memorial University終身教授。現(xiàn)任加拿大數(shù)學(xué)會(huì)旗艦雜志Canadian Journal of Mathematics和Canadian Mathematical Bulletin的副主編(Associate Editor),并于2017年獲得JMAA Ames獎(jiǎng)。長(zhǎng)期從事凸幾何分析、幾何和泛函不等式、隨機(jī)矩陣、量子信息理論和統(tǒng)計(jì)學(xué)等領(lǐng)域的研究,在 Comm. Pure Appl. Math.、Adv. Math.、J. Funct. Anal.、Math. Ann.、CVPDE等國(guó)際著名雜志發(fā)表論文40篇,主持加拿大國(guó)家自然科學(xué)基金(NSERC)項(xiàng)目。
中國(guó)·浙江 湖州市二環(huán)東路759號(hào)(313000) 浙ICP備10025412號(hào)
浙公網(wǎng)安備 33050202000195號(hào) 版權(quán)所有:黨委宣傳部